Abstract

Global warming may accelerate the process of biological invasions, and invasive species that can quickly adapt to new environments will have a negative impact on native species. Animal personalities have significant implications for ecology and evolution. However, few studies have simultaneously examined the combined effects of climate warming and biological invasions on native species. In this study, we hypothesized that temperature was positively correlated with personality, and invasive species had stronger personalities than native species. Accordingly, we established control (20 °C) and warming groups (20 °C, 25 °C, and 30 °C) to rear mosquitofish and medaka fish, individuals acclimatized to rearing temperatures for 7 days, then measured their personalities (sociability, exploration, novelty, and boldness). The results showed that individuals exhibited repeatable variation along the four behavioral axes across all temperature conditions, providing evidence for the presence of personalities. Significant positive correlations were found between each pair of behaviors, indicating the presence of behavioral syndrome. Sociability and exploration were most affected by temperature, showing increasing trends in sociability, exploration, and novelty in both invasive and native species with rising temperatures. Compared to medaka fish, mosquitofish exhibited higher exploration and lower sociability at elevated temperatures, while showing little change in boldness. Our results provide evidence that increased temperatures may promote biological invasions and pose a potential threat to the survival of native species. These findings are significant for understanding the complex impacts of climate change on ecosystems and for formulating effective biodiversity preservation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.