Abstract
Pulsed plasma-enhanced chemical vapor deposition has been engineered to deliver self-limiting growth (i.e., ∼Å∕pulse) of metal oxides such as Ta2O5 and Al2O3. In this process the reactor walls are alternately exposed to atomic oxygen and metal precursors. The degree of adsorption in the latter step can dramatically influence both deposition rates and film quality. The impact of precursor adsorption on the plasma and gas-phase composition in these systems was quantified using optical emission spectroscopy and quadrupole mass spectrometry, respectively. It is shown that the time scale for a complete adsorption on the chamber walls is much greater than gas-phase residence times. Adsorbed compounds significantly alter the reactor composition, particularly at the initiation of each plasma pulse. As a consequence, careful attention must be paid to reactor design and operation to control deposition rates and maintain film quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.