Abstract

The voltage-biased SQUID bootstrap circuit (SBC) is suitable for achieving simple and low-noise direct readout of dc SQUIDs. In practice, an ideal voltage bias is difficult to realize because of non-zero internal resistance Rin of the bias voltage source. In order to clearly observe the influence of Rin on the SBC parameters (namely the flux-to-current transfer coefficient (∂I/∂Φ)SBC and the dynamic resistance Rd(SBC)) and the noise performance, we introduced an additional adjustable resistor Rad at room temperature to simulate a variable Rin between the SQUID and the preamplifier. We found that the measured SQUID flux noise does not rise, even though Rad increases significantly. This result demonstrates that a highly resistive connection can be inserted between the liquid-helium-cooled SQUID and the room-temperature readout electronics in the SBC scheme, thus reducing the conductive heat loss of the system. This work will be significant for developing multichannel SBC readout systems, e.g. for biomagnetism, and systems using SQUIDs as amplifiers, for example, in TES-array readout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.