Abstract

The effect of viscosity on dispersion of capillary–gravity waves becomes significant when the attenuation coefficient is greater than about 2.5% of the wave number. For low viscosity fluids such as water this condition is met at frequencies greater than about 5 kHz in which case direct measurement of wavelength is difficult. For higher viscosity fluids the effect appears at much lower frequencies but direct measurement of wavelength becomes difficult since viscosity causes severe attenuation of surface waves. We have overcome the measurement difficulties by using a new miniature laser interferometer, which directly measures the wavelength of standing capillary waves with the requisite precision to yield reliable dispersion data for viscous fluids. Here we review the effect of viscosity on the dispersion relation and present new experimental data on dispersion of capillary waves in several water-glycerol mixtures. Our data provides direct experimental verification of the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.