Abstract

We study thermomechanical deformations of a steel block deformed in simple shear and model the thermoviscoplastic response of the material by four different relations. We use the perturbation method to analyze the stability of a homogeneous solution of the governing equations. The smallest value of the average strain for which the perturbed homogeneous solution becomes unstable is called the critical strain or the instability strain. For each one of the four viscoplastic relations, we investigate the dependence upon the nominal strain-rate of the critical strain, the shear band initiation strain, the shear band spacing and the band width. It is found that the qualitative responses predicted by the Wright–Batra, Johnson–Cook and the power law relations are similar but these differ from that predicted by the Bodner–Partom relation. The computed band width is found to depend upon the specimen height. # 2001 Elsevier Science Ltd. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call