Abstract

Preferential breaking of chemical bonds using few-cycle, intense laser pulse to obtain desired products offer a formidable challenge in understanding ultrafast chemical reactivity. In a recent study [J. Chem. Phys. 2015, 143, 244310], it was found that carrier-envelope phase influences the bond-selective fragmentation in HOD with up to 3-fold enhancement. We present a detailed theoretical study to understand the influence of initial vibrational states governing the dissociation dynamics. We have carried out a time-dependent quantum mechanical wave packet study on the ground electronic state (X̃ (3)B1) of HOD(2+). Analytical potential energy surface for the ground electronic states of both the neutral molecule and dication has been developed at multireference configuration interaction level of theory with aug-cc-pVQZ basis set. Branching ratio is computed from the accumulated flux in H(+) + OD(+) and D(+) + OH(+) dissociation channels. Our investigation demonstrate a strong dependency on the initial conditions, and thereby preferential cleavage of bonds can be achieved. We have also compared our results with experimental and other theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call