Abstract

The collisional removal of vibrationally excited OH(upsilon=1) by N(4S) atoms is investigated. The OH radical was prepared by 193 nm photolysis of H2O2, and N(4S) atoms were generated by a microwave discharge in N2 diluted in argon. The concentrations of OH(upsilon=0 and 1) were monitored by laser-induced fluorescence as a function of the time after the photolysis laser pulse. The N(4S) concentration was determined from the OH(upsilon=0) decay rate, using the known rate constant for the OH(upsilon=0) + N(4S) --> H + NO reaction. From comparison of the OH(upsilon=0 and 1) decay rates, the ratio of the rate constant k(upsilon=1)(OH-N) for removal of OH(upsilon=1) in collisions with N(4S) and the corresponding OH(upsilon=0) rate constant, k(upsilon=0)(OH-N) was determined to be 1.61 +/- 0.42, yielding k(upsilon=1)(OH-N) = (7.6 +/- 2.1) x 10(-11) cm3 molecule(-1) s(-1), where the quoted uncertainty (95% confidence limits) includes the uncertainty in k(upsilon=0)(OH-N). Thus, the collisional removal of OH(upsilon=1) by N(4S) atoms is found to be faster than for OH(upsilon=0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.