Abstract
Oscillatory wetting instabilities driven by capillary-gravitation forces have been explored very recently in the binary fluid Ga-Pb alloy [A. Turchanin, R. Tsekov and W. Freyland, J. Chem. Phys., 2004, 120, 11 171]. This system is characterized by a complete wetting transition at liquid-liquid coexistence. Due to its metallic nature the bulk and interfacial instabilities are strongly coupled via variation of the respective emissivities. In our previous work we have investigated these phenomena at different cooling cycles and at constant temperature inside the miscibility gap. In this study we present for the first time the observations of the oscillatory wetting instabilities also in heating cycles. The interfacial properties of a Ga0.95Pb0.05 alloy at conditions inside the miscibility gap have been investigated by following the second harmonic generation (SHG) intensity changes. Corresponding model calculations of the Pb-rich wetting film instabilities have been performed taking into account the effect of a temperature variation vertical to the bulk sample. The influence of this temperature variation on the occurrence of the oscillations is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have