Abstract

The propagation characteristics of myocardium stimulated with anodal, cathodal, and equiphasic biphasic pacing pulses were examined in Langendorff-perfused rabbit hearts. Conduction velocity measurements were made using an array of bipolar extracellular electrodes, transmembrane potentials recorded using floating intracellular microelectrodes, and hemodynamics measured by fluid-filled catheter transducer systems. Anodal (A) stimulation pulses improved the electrical conduction at all the stimulus amplitudes tested in both longitudinal (e.g., 5 V 2-msec pulse: [A] 54.9 +/- 0.7 cm/sec; cathodal [C] 49.7 +/- 1.5 cm/sec) and transverse (e.g., 5 V 2 msec pulse: [A] 31.3 +/- 1.7 cm/sec; [C] 23.3 +/- 2.9 cm/sec) directions. Microelectrode recordings verified that increased conduction velocities of the anodal pulses were associated with faster upstrokes of the action potentials. The increased threshold associated with anodal pulses may be overcome by using a biphasic (B) waveform, in effect adding a second phase (e.g., 2-msec pulse: [A] 2.03 +/- 1.3 V; [C] 3.85 +/- 1.5 V; [B] 2.15 +/- 0.9 V). The conduction speeds achieved by the biphasic pulses were found to be comparable to the equivalent anodal pulses (e.g., 5 V 2-msec pulse: [B] 55.2 +/- 1.7 cm/sec longitudinal and 32.4 +/- 2.1 cm/sec transverse). It is postulated that the enhanced conduction by anodal and biphasic pulses may be due to preconditioning of the myocardium before stimulation, resulting in more vigorous action potential upstrokes. In preliminary experiments, it was observed that improved conduction elicited by these pulses also resulted in enhanced contractility as measured by shortened electromechanical delays and faster rate of rise of pressure development (dP/dtmax: [A] 25.4 +/- 0.4 mm Hg/sec; [C] 19.4 +/- 0.8 mm Hg/sec; [B] 25.7 +/- 1.2 mm Hg/sec, respectively). Use of novel hybrid pulses involving an anodal component may offer a way for implanted pacemakers to enhance the electro-mechanical response of the heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.