Abstract

Selective inhibition sintering (SIS) is an emerging powder-based additive manufacturing technology that creates polymer or metal based parts through adhesion of layer-by-layer from three-dimensional computer-aided design model. Replacement of costly laser system in selective laser sintering tremendously reduces the cost of manufacturing. SIS attempts to incorporate low cost heaters to achieve efficient sintering for production of high quality parts. However, SIS demands uniform heating of each layer for effective sintering. The present study focused on examining the heating characteristics of three different types of infrared heaters with respect to various layer thickness and determining the optimal distance between the heating surface and the powder bed. Experiments are conducted using the low-cost heaters to obtain uniform distribution of heat energy across the ultra-high molecular weight polyethylene (UHMWPE) powder surface. The thermal and optical images are captured to observe the temperature distribution on the powder and the surface roughness. Tensile and compressive specimens were fabricated and their corresponding strength was determined and surface roughness was measured to study the surface characteristics of the parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.