Abstract

When a light mitochondrial fraction (L fraction) of rat liver is incubated in the presence of an oxygen free radical generating system (xanthine-xanthine oxidase), the free activity of N-acetylglucosaminidase (NAGase) increases as a result of the deterioration of the lysosomal membrane. Various flavonoids are able to prevent this phenomenon, others are ineffective. Comparative activity studies suggest the importance of the presence of two OH groups in orthosubstitution in the B ring and of an OH in the 3 position. Flavan-type flavonoids behave like their related flavonoids; d-catechin also opposes lysosome disruption. Kaempferol, quercetin, 7,8-dihydroxyflavone and d-catechin inhibit lipoperoxidation occurring in an L fraction incubated with the xanthine oxidase system as ascertained by malondialdehyde (MDA) production. For kaempferol and quercetin, such an inhibition parallels the prevention of NAGase release; this is not the case for the two other compounds where inhibition of NAGase release takes place at a flavonoid concentration lower than that required to oppose MDA production. Morphological observations performed on purified lysosomes confirm the biochemical results. Some flavonoids are also able to prevent release of NAGase caused by the incubation of an L fraction in isoosmotic glucose. Only flavone and hydroxyflavones are effective. It is proposed that the protective effect of flavonoids on lysosomes subjected to oxygen free radicals does not only originate from their scavenger and antilipoperoxidant properties; a more direct action on lysosomal membrane making it more resistant to oxidative aggression has to be considered. The prevention by some flavonoids of lysosome osmotic disruption in isoosmotic glucose could be the result of an inhibition of glucose translocation through the lysosomal membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call