Abstract

This study used a combination method of ultrafine grinding and pregelatinization to modify rice starch (RS) to delay its retrogradation and provide a rationale for prolonging rice product shelf life. The structure and physicochemical properties of the pregelatinized ultrafine grinding rice starch (PURS) were compared with those of RS, ultrafine grinding rice starch (URS), and pregelatinized rice starch (PRS). The microstructure, molecular weight, branched starch length distribution, short-range order, crystal structure, and physical properties of RS, URS, PRS, and PURS were analyzed, respectively. Results showed that RS, URS, PRS, and PURS granules exhibited similar spherical or polygonal shapes, and the content of amylose and short-branched starch in PURS increased compared with RS, URS, and PRS. Furthermore, the cross-polarization of PRS and PURS disappeared. Long-chain amylopectin and average molecular weight of PURS decreased significantly after ultrafine grinding. Our study suggested reduced breakdown value and setback value and improved gel stability, and PURS was beneficial for delaying retrogradation compared to RS, URS, and PRS. The ultrafine grinding method improved the water swelling capacity (WSC), solubility, pasting properties, and gelation properties of PRS. The hardness of PURS was reduced by ultrafine grinding. These suggest that the combination of ultrafine grinding and pregelatinization could improve the properties of RS. Pearson's correlation analysis showed that the structure of PURS significantly influenced the physicochemical properties. The present study was helpful in better understanding the importance of ultrafine grinding in improving the anti-retrogradation of PURS and provided new insights into extending the shelf life of rice products by ultrafine grinding and pregelatinization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.