Abstract
Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, \( \varepsilon = \varepsilon_{\text{o}} + \varepsilon_{\text{T}} [1-\exp (-r^{\prime} \cdot t)] + \dot{\varepsilon }_{\text{m}} \cdot t \), considering minimum creep rate \( \dot{\varepsilon }_{\text{m}} \) instead of steady-state creep rate \( \dot{\varepsilon }_{\text{s}} \). The relationships between (i) rate of exhaustion of transient creep r′ with minimum creep rate, (ii) rate of exhaustion of transient creep r′ with time to reach minimum creep rate, and (iii) initial creep rate \( \dot{\varepsilon }_{\text{i}} \) with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r′ and minimum creep rate \( \dot{\varepsilon }_{\text{m}} \) decreased, whereas the transient strain ɛT increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of \( \frac{{\left( {\varepsilon - \varepsilon_{\text{o}} } \right)}}{{\varepsilon_{\text{T}} }} \) with \( \frac{{\dot{\varepsilon }_{\text{m}} \cdot t}}{{\varepsilon_{\text{T}} }} \). The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have