Abstract
Miniature heat pipe is a compact heat transfer device with very high heat transfer capability. The miniature heat pipes have been widely accepted for thermal management in laptop computer. Generating heat from chip-set is rapidly transferred to a heat sink via the miniature heat pipe which occupies small space, resulting in smaller and more attractive size of the laptop. Heat pipe bending is unavoidable in such small space. However, tube bending decreases thermal performance of heat pipe and it stops working in some cases. In this study, a computer program to simulate heat transfer characteristics of a bending water-copper-sintered-wick heat pipe has been established. Domains of heat pipe consist of three parts; vapor of working fluid in vapor core which transfer heat and mass from evaporator section to condenser section, liquid of working fluid in wick which transfer heat and mass from condenser section to evaporator section in porous media by capillary force, and container wall. In simulation, fluid flow and heat transfer were assumed to be steady, laminar and incompressible. The porous media is saturated with liquid and working fluid is assumed to be Newtonian fluid. The governing equations, i.e. continuity, Navier-Stokes, and energy equations, and boundary conditions were solved by using the Finite Element Method (FEM). Several bending angles (0 and 90; angle measured from straight pipe) with 6 mm outer diameter and 200 mm length were simulated and tested. It was found that the predicted and experimental thermal resistances of heat pipe, when bending angle increases from 0 to 90, increased from 0.47°C/W to 0.65°C/W and 0.67°C/W to 0.88°C/W respectively, due to rising of the vapor pressure drop in vapor channel. The simulation results are in agreement with experimental data with 26-29% error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.