Abstract

Organotin compounds are widely distributed toxicants. They are membrane-active molecules with broad biological toxicity. In this contribution, we study the effect of triorganotin compounds on membrane permeability using phospholipid model membranes and human erythrocytes. Tribultyltin and triphenyltin are able to induce the release of entrapped carboxyfluorescein from large unilamellar vesicles. The rate of release is similar for phosphatidylcholine and phosphatidylserine systems and the presence of equimolar cholesterol decreases the rate of the process. Release of carboxyfluorescein is almost abolished when a non-diffusible anion like gluconate is present in the external medium, and it is restored by addition of chloride. Tributyltin is able to cause hemolysis of human erythrocytes in a dose-dependent manner. Relative kinetics determination shows that potassium leakage occurs simultaneously with hemoglobin release. Hemolysis is reduced when erythrocytes are suspended in a gluconate medium. These results indicate that triorganotin compounds are able to transport organic anions like carboxyfluorescein across phospholipids bilayers by exchange diffusion with chloride and suggest that anion exchange through erythrocyte membrane could be related to the process of hemolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.