Abstract

Acrylic pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer-seeded semi-continuous emulsion polymerization process with butyl acrylate (BA), methyl methacrylate, acrylic acid (AA), 2-hydroxyethyl acrylate and trifunctional cross-linker, triallyl isocyanurate (TAIC). Influences of TAIC on the resultant latex and PSA properties were comprehensively investigated. The results indicated that latex particle size was independent of the amount of TAIC in the pre-emulsion feed, while the viscosity of the latex increased remarkably with TAIC content increased. Thermal gravimetric analysis result showed that the thermal stability of the polymers was improved significantly with the addition of TAIC. Besides, with the increase in TAIC content, gel content of the polymer increased significantly, while molecular weight between cross link points (Mc) and sol molecular weight (Mw, Mn) of the polymer decreased remarkably. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncrosslinked counterparts. Finally, dynamic mechanical analysis and atomic force microscopy were also used to evaluate the viscoelastic properties and surface morphology of the acrylic emulsion PSA film, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call