Abstract

The automation and assembly lines of factories have faced the need for reliable handling of porous, fragile, and soft objects. Current soft grippers have difficulty robustly grasping flat, flexible surfaces without distorting them. This paper proposes a soft gripper based on annulus microwedge adhesive for grasping flat objects using negative pressure actuation mechanisms, which can achieve controllable adhesives to reliably grasp and easily release smooth flat objects. This is achieved through negative pressure actuation, which provides a centripetal load to the annular microwedge adhesives for strong attachment, by returning to normal pressure, the centripetal load is rapidly removed, allowing for easy detachment from the adhesive surface. Additionally, the relationship between the geometrical parameters of the deformation chamber and the contact area of annulus microwedges is investigated by using finite-element method models and experiments. The results show that the wall thickness is a key parameter in designing the deformation chamber. The results of the payload test have determined the geometrical and pressure parameters of the deformation chamber with the best adhesion performance. Finally, a demonstration shows that the gripper can handle various objects for potential applications, such as in clean environmental industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.