Abstract
Highly stretchable polyvinyl alcohol (PVA) films with a strain at break of around 700% were obtained from solutions in trifluoroacetic acid (TFA). Structural and chemical analysis by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (ATR–FTIR) showed that TFA is retained by PVA via hydrogen bonds between the carboxylic acid groups and the hydroxyl groups of the polymers causing a strong plasticizing effect. Additionally, composites of PVA with cellulose could be developed using TFA as common solvent. The morphological and mechanical properties of the polymer composites could be accurately tuned by modifying the relative concentrations of the two polymers. Data from water adsorption isotherms and wetting measurements indicated that the presence of trifluoromethyl groups in PVA render the composite films relatively hydrophobic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.