Abstract

Resistive metal/β-Ga2O3/metal structures with different interelectrode distances and electrode topologies were investigated. The oxide films were deposited by radio-frequency magnetron sputtering of a Ga2O3 (99.999%) target onto an unheated sapphire c-plane substrate (0001) in an Ar/O2 gas mixture. The films are sensitive to ultraviolet radiation with wavelength λ = 254. Structures with interdigital electrode topology have pronounced persistent conductivity. It is shown that the magnitude of responsivity, response time τr, and recovery time τd are determined by the concentration of free holes p involved in recombination processes. For the first time, it is proposed to consider hole trapping both by surface states Nts at the metal/Ga2O3 interface and by traps in the bulk of the film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.