Abstract
The simultaneous release of electrons and holes by what seems to be a single trap has been observed experimentally. We previously performed numerical simulations on a phenomenological model which showed similar behaviour. Here, we provide an analytical solution to this model. This model explains trends in radioluminescence, thermoluminescence and thermally stimulated conductivity of a material with one electron trap, one hole trap and one radiative recombination centre, in which thermal excitation of the electron trap occurs before that of the hole trap. It is shown that TL emission due to electron recombination at centres can be controlled by a hole trap and the electron recombination will have a peak shape associated with the hole trap's parameters. When this happens, the peaks in free electron concentration, free hole concentration and TL all occur nearly simultaneously. The analytical model allows this to be explained along with scaling laws and initial rise behaviour. Under the conditions illustrated by this model, the usual methods used to distinguish between electron traps and hole traps will give incorrect results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.