Abstract

The oocyte quality decreases during ovarian tissue transport to the laboratories of in vitro embryo production. To provide additional information on how the conditions of transporting sheep ovaries impact the ovarian tissue and oocytes’ ability to develop into blastocyst stages, we have studied new transport media Ankara University Zootekni (AUZ1, AUZ2) supplemented with antioxidants (melatonin, Vit E, and Vit A), buffer solution, and energy substrates, and compared them with the traditional transport media: Phosphate-Buffered Saline (PBS), and Charles Rosenkrans 1 (CR1), Normal Saline (NS) at different temperatures (-6 to 30 °C). We also studied and compared how well different transport media preserve the ovarian tissue's structural integrity while transporting sheep ovaries at 4°C. Our findings indicated that various temperatures and transport media play critical roles in embryo development. The embryo development rates showed that when sheep ovaries are transported in AUZ1, they produce oocytes with a higher embryo development rate than other transport media at any temperature. In addition, histology examination revealed that the transport of sheep ovarian tissue in any medium at a temperature of 4 °C did not negatively impact the viability and histomorphology of the primordial, primary, and secondary follicles. In contrast to other transport media, the AUZ1 medium maintained the normal morphology of antral follicles, Graafian follicles, and the cumulus oophorus of sheep ovarian tissue. In conclusion, adding melatonin, buffer solution, and energy substrates to the transportation medium of ovarian tissues has a beneficial and positive role in maintaining ovarian tissue and increasing the rates of embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.