Abstract

Ribosome arrest peptides (RAPs) such as the SecM arrest peptide (SecM AP: FSTPVWISQAQGIRAGP) and WPPP with consecutive Pro residues are known to induce translational stalling in Escherichia coli. We demonstrate that the translation-enhancing SKIK peptide tag, which consists of four amino acid residues Ser-Lys-Ile-Lys, effectively alleviates translational arrest caused by WPPP. Moreover, the proximity between SKIK and WPPP significantly influences the extent of this alleviation, observed in both PURE cell-free protein synthesis and in vivo protein production systems, resulting in a substantial increase in the yield of proteins containing such RAPs. Furthermore, we unveil that nascent SKIK peptide tag and translation elongation factor P (EF-P) alleviate ribosome stalling in consecutive-Pro-rich protein to synergistically promote translation. A kinetic analysis based on the generation of superfolder green fluorescent protein under in vitro translation reaction reveals that the ribosome turnover is enhanced by more than 10-fold when the SKIK peptide tag is positioned immediately upstream of the SecM AP sequence. Our findings provide valuable insights into optimizing protein production processes, which are essential for advancing synthetic biology applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.