Abstract

For high-speed machining, the position commands from the trajectory-controlled algorithm should be as smooth as possible since even a small discontinuity in position command may lead to vibrations of the mechanical structure and the servo system. A simplified mechatronic model was proposed to analyze the impact of the trajectory-controlled algorithm on the performance of high-speed machining. The effects of the control loop parameters and natural frequency of mechanical structure on the vibration were also studied. Experimental tests on the vertical z-axis of a high-speed machining center indicate that the presented methodology is able to evaluate the evolution of the vibration due to the trajectory-controlled algorithm, and it is also helpful to choose the suitable controlled parameters for improving the mechatronic performance of high-speed machining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call