Abstract

There are no studies analyzing the effect of training loads on purine metabolism during long training periods. The study's purpose was to evaluate the effect of training load changes and subsequent detraining on purine metabolism in middle-distance runners during a 1-yr cycle. In four characteristic points of the training cycle, loads assigned to five intensity zones, pre- and postexercise plasma hypoxanthine (Hx) and uric acid, and erythrocyte Hx-guanine phosphoribosyltransferase (HGPRT) activity were determined in 11 male middle-distance runners at the national level, practicing competitive sport for 8.1 ± 0.3 yr and with a mean age of 22.3 ± 0.7 yr, body mass of 73.0 ± 3.4 kg, and body height of 180 ± 2.2 cm. In the competition phase (CP), training loads in aerobic compensation and threshold zones decreased by 65.4% and by 20.5%, respectively. At the same time, anaerobic training loads increased by 132.5% in the VO(2max) zone and by 74.6% in the lactic acid tolerance zone. Postexercise Hx decreased significantly in CP by 6.2 μmol·L(-1). and increased in the transition phase (TP) by 17.4 μmol·L(-1). Both pre- and postexercise HGPRT activity increased significantly in CP by 9.3 nmol·mg(-1)·h(-1). and by 4.9 nmol·mg(-1)·h(-1). , respectively, and decreased significantly in TP by 10.6 nmol·mg(-1)·h(-1). and by 12.0 nmol·mg(-1)·h(-1). , respectively. A significant uric acid increase of 54 μmol·L(-1). was revealed merely in TP. The effect of anaerobic training on purine metabolism is significant despite of a very short total duration of anaerobic loads. Elevated preexercise HGPRT activity in CP suggests adaptation changes consisting in a "permanent readiness" for purine salvage. The detraining in TP leads to reverse adaptation changes. Probably, plasma Hx concentration and erythrocyte HGPRT activity may be considered as a useful measure of training status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.