Abstract

Abstract The total heat input by the laser directly affects the temperature distribution of the rotor shaft during the cladding process, and then affects its coaxiality. This article uses ANSYS for numerical simulation to study the effect of laser heat input on the deformation of the rotor shaft during laser cladding process. Simulate and analyze the temperature and stress fields inside the rotor shaft using thermal coupling. The results show that by changing the pitch, axial cladding width and laser irradiation duration to change the laser induced total heat input, a more uniform temperature distribution can be generated in the rotor shaft. The increase of temperature distribution uniformity can reduce the deformation of rotor shaft during cladding. Using a cladding equipment, iron based customized alloy powder was coated on the 45 steel rotor shaft for cladding experiments. And the mechanical properties and coaxiality of the rotor shaft after cladding were measured. The results showed that the hardness and wear resistance of the cladding layer were significantly improved compared to the substrate, and the changes in coaxiality of the rotor shaft were consistent with the simulation results, with relatively small errors. It is of great significance for repairing damaged rotor shafts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call