Abstract

The effect of TiO2 content on the oxidation of sintered bodies from the conventional Si3N4-Y2O3-Al2O3-AlN system was investigated. Sintered specimens composed of Si3N4, Y2O3, Al2O3, and AlN, with a ratio of 100 : 5 : 3 : 3 wt% and containing TiO2 in the range of 0 to 5 wt% to Si3N4, were fabricated at 1775 °C for 4 h at 0.5 MPa of N2. Oxidation at 1200 to 1400 °C for a maximum of 100 h was performed in atmospheres of dry and wet air flows. The relation between weight gain and oxidation time was confirmed to obey the parabolic law. The activation energies decreased with TiO2 content. In the phases present in the specimens oxidized at 1300 °C for 100 h in dry air, Y3Al5O12 and TiN, which had existed before oxidation, disappeared. Alpha-cristobalite and Y2O3·2TiO2 (Y2T) appeared in their place and increased with increasing TiO2 content. In those oxidized at 1400 °C, α -cristobalite was dominant and very small amounts of Y2O3·2SiO2 and Y2T were contained. There was a tendency for more α -cristobalite to form in oxidation in wet air than in dry air. Therefore, moisture was confirmed to affect the crystallization of SiO2 formed during oxidation. Judging from the lower activation energy, the crystallization, and the pores formation, we concluded that the addition of TiO2 decreases oxidation resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call