Abstract
It is well established that the degree of airway smooth muscle shortening produced by a given dose of bronchial agonist is greatly affected by lung volume. The airways are tethered by parenchymal attachments, the tension of which increases progressively with lung volume, thereby presenting a commensurately increasing hindrance to smooth muscle contraction. Earlier studies (P. F. Dillon, M. O. Aksoy, S. P. Driska, and R. A. Murphy. Science 211: 495-497, 1981) presented evidence that smooth muscle contraction initially involves rapidly cycling cross bridges, which then change to noncycling (latch) bridges. They also suggested that most of the muscle shortening occurs during the early rapid cross-bridge phase. This implies that smooth muscle subject to a given load early in contraction should shorten less than when it is subject to the same load later on. An in vitro study (W. Li and N. L. Stephens. Can. J. Physiol. Pharmacol. 72: 1458-1463, 1994) obtained support for this notion. To test this hypothesis in vivo, we measured the changes in lung impedance at 1 and 6 Hz produced in dogs by a bolus intravenous injection of methacholine when lung volume was increased for 10 s at different times after injection. We found that the changes in mechanics were greatly inhibited, whereas lung volume was elevated. However, when lung volume was returned to its initial level, the lung mechanics continued to change at a rate unaffected by the preceding volume change. We conclude that temporary mechanical inhibition of airway smooth muscle shortening in the normal dog in vivo merely delays an otherwise normal course of contraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have