Abstract

To improve the yield strength of an FeCoCrNiMn high-entropy alloy (HEA), elemental Ti and C were doped into the alloy. Subsequently, an in situ synthesized carbides particle-strengthened HEA matrix composite was prepared by mechanical alloying (MA), followed by a vacuum hot-pressing sintering (VHPS) method. The TiC nanoparticles were distributed along the grain boundaries. The microstructure of the alloy contained a face-centered cubic (FCC) solid solution as the matrix phase and small amounts of TiC, M23C6 and M7C3 (where M = Cr, Mn, Fe) carbides. The addition of elemental Ti and C significantly improved the room-temperature compressive yield strength of the FeCoCrNiMn HEA from 774 MPa to 1445 MPa (an 86.7% increase), accompanied by a decrease in the compressive strength and plasticity. Grain boundary strengthening and precipitation strengthening are the main strengthening mechanisms of the alloy doping with elemental Ti and C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.