Abstract
Opuntia ficus-indica (OFI) is an emerging biomass that has the potential to be used as substrate in anaerobic digestion. The goal of this work was to investigate the effect of three pretreatment techniques (thermal, alkaline, acidic) on the chemical composition and the methane yield of OFI biomass. A composite experimental design with three factors and two to three levels was implemented, and regression modelling was employed using a total of 10 biochemical methane potential (BMP) tests. The measured methane yields ranged from 289 to 604 NmL/gVSadded; according to the results, only the acidic pretreatment (HCl) was found to significantly increase methane generation. However, as the experimental values were quite high with regards to the theoretical methane yield of the substrate, this effect still needs to be confirmed via further research. The alkaline pretreatment (NaOH) did not noticeably affect methane yields (an average reduction of 8% was recorded), despite the fact that it did significantly reduce the lignin content. Thermal pretreatment had no effect on the methane yields or the chemical composition. Scanning electron microscopy images revealed changes in the chemical structure after the addition of NaOH and HCl. Modelling of the cumulated methane production by the Gompertz modified equation was successful and aided in understanding kinetic advantages linked to some of the pretreatments. For example, the alkaline treatment (at the 20% dosage) at room temperature resulted to a μmax (maximum specific methane production rate [NmLCH4/(gVSadded·d)]) equal to 36.3 against 18.6 for the control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Waste Management & Research: The Journal for a Sustainable Circular Economy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.