Abstract

Objectives:The demand for polylactic acid (PLA) is increasing as an alternative to conventional petroleum-based plastics due to its eco-friendly characteristics. PLA can be processed through anaerobic digestion (AD) along with other organic wastes to promote efficient and controlled biodegradation. This study aimed to evaluate the feasibility of biogas production through AD of PLA and to enhance efficiency through the addition of conductive materials.Methods:Two sets of biochemical methane potential (BMP) tests were conducted. The first BMP test involved substrate/inoculum ratios (SIRs) of 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 (g COD PLA/g COD seed sludge). Conductive materials powdered activated carbon (PAC), carbon nanotube (CNT), and Magnetite were individually added to reactors at a concentration of 3 g/L in the second test.Results and Discussion:The study revealed an increasing trend in methane production and methane yield with higher levels of PLA input. However, a decline in methane yield was observed when PLA was injected at levels surpassing 35g COD/L. This phenomenon can be attributed to a prolonged Lag phase, indicating a longer adaptation period for microorganisms, consequently resulting in a reduction of the conversion rate from 1g COD substrate to methane. The introduction of conductive material led to elevated cumulative methane production and methane yield in comparison to the control group. Notably, Magnetite exhibited the highest increase rate among the tested materials. Additionally, the addition of PAC demonstrated favorable results in terms of methane production rate at 99.4mL/L/Day and a Lag phase of 5.7 days. Conclusion:Experiments were conducted to evaluate the effects of PLA biogas production and the injection of PAC, CNT, and Magnetite at various substrate/inoculum ratios. When PLA was used as a substrate for anaerobic digestion, its feasibility was confirmed. However, it exhibited lower efficiency compared to other substrates. Therefore, the addition of a conductive material was found to increase the biogas production efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.