Abstract

IntroductionIn clinical practice, foot load receptors are very important in shaping the correct vertical posture and optimal equilibrium reactions. They are so important that stimulating them gives measurable effects in improving both balance and posture. Plantar pressure distribution is an important parameter that provides information on changes in a person’s posture, also during gait.AimThe aim of the work is to assess the effect of thoracic kyphosis and lumbar lordosis on the distribution of ground reaction forces on the feet.Materials and MethodsA total of 211 subjects aged 8–12 were examined. Body posture and distribution of ground reaction forces on the feet were assessed using the following parameters: thoracic kyphosis angle, lumbar lordosis angle, maximum pressure (static), average pressure (static), foot surface, distribution of foot pressure, maximum pressure (dynamic), time load (dynamic). DIERS formetric and DIERS pedoscan methods were used to measure the parameters.ResultsThe level of the kyphosis angle correlated positively with the percentage distribution of forefoot load in static conditions. The level of lordosis angle correlated positively with the foot surface and forefoot load. Positive correlation of the lordosis angle is also related to its connection with the difference in leg load during gait. A broader cause and effect view of body posture defects and the distribution of ground reaction forces on the feet can affect a more complete assessment of the correlation between these variables, contributing to more effective treatment of any disorders of the described phenomena.ConclusionThe size of thoracic kyphosis and lumbar lordosis affects the distribution of ground reaction forces on the feet. The effect of lumbar lordosis has a linear value in relation to percentage distribution of forefoot and heel loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.