Abstract

Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, particularly for optical and gas sensing applications. The influence of thickness and solvent on various features of ZnO thin films deposited at ambient temperature and barometric pressure by the sequential ionic layer adsorption and reaction method (SILAR) was carefully studied in this work. Ethanol and distilled water (DW) were alternatively used as a solvent for preparation of ZnO precursor solution. Superficial morphology, crystallite structure, optical and electrical characteristics of the thin films of various thickness are examined applying X-ray diffraction (XRD) system, scanning electron microscopy, the atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, Hall effect measurement analysis and UV response study. XRD analysis confirmed that thin films fabricated using ethanol or DW precursor solvents are hexagonal wurtzite ZnO with a preferred growth orientation (002). Furthermore, it was found that thin films made using ethanol are as highly crystalline as thin films made using DW. ZnO thin films prepared using aqueous solutions possess high optical band gaps. However, films prepared with ethanol solvent have low resistivity (10–2 Ω cm) and high electron mobility (750 cm2/Vs). The ethanol solvent-based SILAR method opens opportunities to synthase high quality ZnO thin films for various potential applications.

Highlights

  • Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, for optical and gas sensing applications

  • ZnO thin films of different thickness were synthesized on glass substrates by the sequential ionic layer adsorption and reaction method (SILAR) method using distilled water and ethanol as precursor solvents

  • ZnO thin films grown using ethanol are a high crystalline structure compared to the films grown using distilled water

Read more

Summary

Introduction

Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, for optical and gas sensing applications. During the growth of ZnO with a solvent, ethanol tends to produce a more compact layer on the substrate surface and the thickness of these samples becomes thinner compared to water. Despite the variation of SILAR cycles and use of different precursor solutions, the calculated constants of lattice (a = 3 Å, c = 5.2 Å) and interplanar distance (d = 2.6 Å) of the ZnO hexagonal structure were approximately the same for all samples.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call