Abstract
In this study, the potential application of Al-Si-Cu aluminum alloy (ALDC12), which is widely used in the high-pressure die-casting (HPDC) process, for fabricating a wrought product was evaluated. The effects of thermo-mechanical treatment and Sr addition on the microstructure, workability, and mechanical properties of the ALDC12 alloy were investigated in detail. The introduction of thermo-mechanical treatment significantly reduced the interconnectivity of the brittle eutectic Si phase formed during solidification and average grain size. Therefore, the uniformly distributed spherical Si particles and fine grain size considerably improved both the strength and ductility of the ALDC12 alloy. Furthermore, the addition of Sr effectively modified the eutectic Si phase in the casting process, which significantly reduced the occurrence of edge cracks in the subsequent rolling step and further improved the mechanical properties of the final sheets. Consequently, through microstructural control of the ALDC12 aluminum alloy by the thermo-mechanical treatment and Sr addition, it was possible to obtain suitable workability and significantly improved mechanical properties compared with those of cast products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.