Abstract

This research explores the impact of thermomechanical treatment on the recovery stress induced by the shape memory effect in an Fe-based shape memory alloy with the composition of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) wt.%. Fe-based shape memory alloys have gained considerable attention for their potential applications in vibration control, energy dissipation, and structural strengthening or re-centering within the construction industry. To evaluate the recovery stress behaviour of this Fe-based shape memory alloy, specimens underwent a two-step aging heat treatment process, involving initial aging at 600 °C for 20 hours, followed by subsequent aging at 680 °C for 8 hours. Then heat-treated samples subjected to a cyclic thermomechanical treatment, involving a combination of deformation up to 2% and heating at 200 °C for 30 min in each cycle. The microstructure and mechanical properties were assessed using techniques such as scanning electron microscopy, as well as tensile tests. The results revealed that the thermomechanical treatment had a notable impact on the microstructure and mechanical properties of the Fe-based shape memory alloy. It resulted in an enhancement of the shape memory effect and recovery stress. These improvements were associated with an increase in the martensitic phase fraction. Additionally, the presence of VC precipitates in the treated samples contributed to the enhancement of the shape memory effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.