Abstract

In the present work the influence at micromechanical scale of thermal residual stresses, originated in the cooling down associated to the curing process of fibrous composites, on inter-fibre failure under transverse tension is studied. In particular, the effect of the presence of thermal residual stresses on the appearance of the first debonds is discussed analytically, whereas later steps of the mechanism of damage, i.e. the growth of interface cracks and their kinking towards the matrix, are analysed by means of a single fibre model and making use of the Boundary Element Method (BEM). The results are evaluated applying Interfacial Fracture Mechanics concepts. The conclusions obtained predict, at least in the case of dilute fibre packing, a protective effect of thermal residual stresses against failure initiation, the morphology of the damage not being significantly affected in comparison with the case in which these stresses are not considered. Experimental tests are carried out, the results agreeing with the conclusions of the numerical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call