Abstract
Abstract This paper describes the influence of thermal processing temperature on the microphase separation, hydrogen bonding, phase transitions and mechanical properties of 3,3-bis(azidomethyl)oxetane (BAMO)/tetrahydrofuran (THF) polyurethane binder, which is used for propellant. Fourier transform infrared (FTIR) spectroscopy confirmed that the intended polyurethane was synthesized and was used to determine the state of the local hydrogen bonding in these polyurethanes. The results showed that the thermal processing clearly imparts significant changes to the H-bonded environment and this was confirmed in a quantitative fashion using small-angle X-ray scattering (SAXS). The dynamic mechanical analysis (DMA) revealed rather significant changes in dynamic segmental relaxations and storage moduli for this series of BAMO/THF polyurethanes, which are in keeping with the findings from other experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have