Abstract
The effect of lattice fluctuations and electronic excitations on the radiative rate is demonstrated in CdSe/CdS core/shell spherical quantum dots (QDs). Using a combination of time-resolved photoluminescence spectroscopy and atomistic simulations, we show that lattice fluctuations can change the radiative rate over the temperature range from 78 to 300 K. We posit that the presence of the core/shell interface plays a significant role in dictating this behavior. We show that the other major factor that underpins the change in radiative rate with temperature is the presence of higher energy states corresponding to electron excitation into the shell. These effects should be present in other core/shell samples and should also affect other excited state rates, such as the rate of Auger recombination or the rate of charge transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.