Abstract

Based on the previous work of SHCCT diagram developing of China low activation martensitic (CLAM) steel, the effect of thermal cycle on the microstructure and mechanical properties of CLAM steel weld is investigated using physical thermal simulation (Gleeble 3500) to control heat input accurately. Three conditions including single layer, double layer welding and post-weld heat treatment (PWHT) are involved. The results show that higher cooling rate leads to better grain refinement but higher hardness in the coarse grained heat affected zone. Precipitation of delta ferrite is relatively severe when the cooling rate is low. Thermal cycle during double layer welding has an obvious weakening effect on mechanical properties, which mainly results from the larger quantity of delta ferrite precipitates. The microstructure and mechanical properties of CLAM steel joints can be improved by PWHT. Hardness of heat-affected zone tends to keep uniform with the increase of tempering temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call