Abstract
To study the effect of theaflavin on the airway’s inflammation and remodeling in mice with asthma. The mice were divided into the control, asthma model, and the theaflavin treatment groups to analyze the changes in pulmonary compliance and lung resistance of the mice with asthma to theaflavin treatment. The theaflavin treatment groups consisted of the low-dose (15 mg/kg theaflavin-intragastric administration), medium-dose (30 mg/kg), and high-dose (60 mg/kg) groups. Alveoli lavage liquid was gathered from the mice to count the number of inflammatory cells, and the levels of interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13), and eotaxin were detected by ELISA. The levels of proteins, such as transforming growth factor-1 (TGF-1), alpha-smooth muscle actin (α-SMA), CyclinD1,CyclinD2, Toll-like receptors-4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κBp65, which showed the performance of lung tissue was tested by Western blotting. Compared to the control group, the lung resistance of the asthma model mice was increased, and compliance was decreased after increasing concentrations of acetylcholine (Mch) stimulation. Compared to the asthma model group, the pulmonary resistance was decreased, and pulmonar compliance was increased according to the rising concentration of Mch in theaflavin-L, theaflavin-M and theaflavin-H mice. Compared to the control group, the number of cells, macrophages, acidophilic cells, lymph, and neutrophile granulocytes increased in the alveolar perfusion fluid of asthmatic mice. The level of interleukin 4, interleukin 5, interleukin 13, and eotaxin, TGF-β1, α-SMA, Cyclin D1, MyD88, TLR4, Cyclin D2, and NF-κBp65 proteins of the lung was also increased. Compared to the model group, the number of cells, macrophages, acidophilic cells, lymph, and neutrophile granulocytes were decreased successively in the alveolar lavage fluid in the theaflavin-L, theaflavin-M, and theaflavin-H mice. Meanwhile, the content of interleukin 4, interleukin 5, interleukin 13, and eotaxin were decreased successively, and the level of TGF-β1, α-SMA, Cyclin D1, MyD88, TLR4, Cyclin D2, and NF-κBp65 protein increased successively in the theaflavin-L, theaflavin-M, and theaflavin-H mice. Theaflavin has been found to reduce airway inflammation, impede airway remodeling, and decrease the TLR 4/MyD88/NF-κB signaling in asthmatic mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.