Abstract
Composite layers of Ni-P and PVDF were obtained using surfactants to enhance the corrosion resistance of the fluoride ion. The zeta potential of PVDF particles was changed with the surfactants (cationic, anionic, and nonionic). The effects of the zeta potential of PVDF particles on the particle distribution, morphology, composition, hydrophobicity, and corrosion resistance of the composite layers were studied using the different types of surfactants. The deposition behaviors of the Ni-P layer and PVDF particles strongly depended on the zeta potential of PVDF particles. Using anionic surfactants, especially C12H25SO4Na (SDS), the zeta potential of PVDF particles was −30.6 mV. The densification and uniformity of the composite layers with a higher amount of PVDF particles were achieved, which resulted in the superior resistance to fluoride ion corrosion. After heating at 180 °C, the PVDF particles were melted, spread, and filled into the pores of the composite layers, which led to the further enhanced corrosion resistance. It was demonstrated that the zeta potential of PVDF particles affected the dispersion, stability, and codeposition with electroless nickel, which resulted in the uniform and dense composite layers and enhanced the corrosion resistance of the fluoride ion.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have