Abstract

This study focuses on the power cycles such as organic Rankine cycle (ORC) and combined regenerative Brayton/ORC. The selection of working fluids and power cycles is traditionally conducted by trial and error method and performing a large number of parametric calculations over a range of operating conditions. A methodology for selection of optimal working fluid based on the cycle operating conditions and thermophysical properties of the working fluids was developed in this study. Thermodynamic performance (thermal efficiency and net power output) of a simple subcritical and supercritical ORC was analyzed over a range of operating conditions for a number of working fluids to determine the effect of operating parameters on cycle performance and select the best working fluid. New expressions for thermal efficiency of a simple ORC are proposed. In case of a regenerative Brayton/ORC, the results show that CO2 is the best working fluid for the topping cycle. Depending on the exhaust temperature of the topping cycle, Isobutane, R11 and Ethanol are the preferred working fluids for the bottoming (ORC) cycle, resulting in highest efficiency of the combined cycle. Finally, a performance map is presented as guidance for selection of the best working fluid for specific cycle operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call