Abstract
ABSTRACTThe main challenge associated with the synthesis of pure bismuth ferrite (BFO) is the extremely high stability of parasitic or secondary phase Bi-oxides, which contaminates the single ferrite phase and affects the corresponding functional properties. Therefore, any attempt to determine the optimum synthesis conditions conducive to the inhibition of the formation of those impurity phases becomes indispensable. Accordingly, the present work addresses the systematic evaluation of the type of solvent and synthesis parameters to exclusively produce the BFO structure. Nanocrystalline BFO powders were synthesized after thermal treatment of the solid intermediates formed in ethylene glycol and acetic acid media. The experimental work also considered the effect of the excess of Bi species with respect to the BiFeO3stoichiometry and the annealing of the intermediates at different temperatures. The structure formation was confirmed by XRD analysis and magnetic properties were studied by VSM. X-ray diffraction analyses confirmed that powders exhibiting single phase BFO structure were produced after annealing the intermediate which was formed in acetic acid for one hour at 700°C. The average crystallite size and lattice parameter were calculated to be approximately 40 nm and 5.36 Å, respectively. It was also found that the synthesis under 7% of Bi-stoichiometric excess inhibited the formation of the parasitic phases after annealing the intermediate produced in ethylene glycol medium. The saturation magnetization of the powders annealed at 700°C were 0.15 emu/g and 0.17 emu/g when the BFO intermediates were formed in ethylene glycol and acetic acid media, respectively. The corresponding coercivity values were 6 Oe and 21 Oe.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have