Abstract
Experiments were conducted to study the effect of the size of micro-pin-fin on the boiling heat transfer from a silicon chip immersed in a pool of degassed or gas-dissolved FC-72. Four kinds of micro-pin-fins with the dimensions of 10 × 10 × 60 to 50 × 50 × 60 μm3 (width × thickness × height) were fabricated on the surface of a square silicon chip with the dimensions of 10 × 10 × 0.5 mm3 by use of the dry etching technique. Experiments were conducted at the liquid subcoolings Δ Tsub of 0, 3, 25 and 45 K under the atmospheric condition. The results were compared with those for a smooth chip and previously developed enhanced surfaces. The micro-pin-finned chips showed a considerable heat transfer enhancement as compared to a smooth chip in the nucleate boiling region. The boiling curve showed a steep increase in the heat flux with increasing wall superheat. For the micro-pin-finned chips, the critical heat flux was 1.9 to 2.3 times as large as that for the smooth chip and the wall temperature at the critical-heat-flux point was less than the upper limit for the reliable operation of LSI chips (=85°C). While the wall superheat at boiling incipience was strongly dependent on the dissolved gas content, it was little affected by the liquid subcooling.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have