Abstract
The dust grain charge in the plasma of a glow discharge in noble gases and nitrogen is calculated in the orbit motion limited model for reduced fields in the range of E/N = 1–20 Td. The calculations were performed using the electron energy distribution functions (EEDFs) obtained by solving the Boltzmann equation numerically with allowance for elastic and inelastic electron scattering and analytically with allowance for only elastic scattering and (for nitrogen) excitation of rotational levels, as well as using a Maxwellian EEDF. In the latter case, either the characteristic electron energy or mean electron energy multiplied by two thirds was used as the electron temperature. It is shown that the calculations with the use of a Maxwellian EEDF yield larger values of the grain charge as compared to those calculated with EEDFs obtained by solving the Boltzmann equation. The range of E/N values is determined in which analytical expressions for the EEDF obtained with allowance for elastic scattering and excitation of rotational levels are applicable to calculating the grain charge. The effect of the EEDF shape on the screening of the dust grain charge in plasma is investigated. The Debye screening length in case of a Maxwellian EEDF is shown to be shorter than that obtained with EEDFs calculated by numerically solving the Boltzmann equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.