Abstract

In recent years, the immiscible polymer blend system has attracted much attention as the matrix of nanocomposites. Herein, from the perspective of dynamics, the control of the carbon nanotubes (CNTs) migration aided with the interface of polystyrene (PS) and poly (methyl methacrylate) (PMMA) blends was achieved through a facile melt mixing method. Thus, we revealed a comprehensive relationship between several typical CNTs migrating scenarios and the microwave dielectric properties of their nanocomposites. Based on the unique morphologies and phase domain structures of the immiscible matrix, we further investigated the multiple microwave dielectric relaxation processes and shed new light on the relation between relaxation peak position and the phase domain size distribution. Moreover, by integrating the CNTs interface localization control with the matrix co-continuous structure construction, we found that the interface promotes double percolation effect to achieve conductive percolation at low CNTs loading (~1.06 vol%). Overall, the present study provides a unique nanocomposite material design symphonizing both functional fillers dispersion and location as well as the matrix architecture optimization for microwave applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call