Abstract
Clonal propagation is the main strategy for clonal plants to adapt to wind-sand habitat, and underground bud bank could reflect the potential ability of clonal propagation. However, the effects of population density on belowground bud bank are unknown, hindering efforts in the process of dune stabilization. We investigated the horizontal density and vertical distribution of belowground bud bank of a typical rhizomatous grass Leymus secalinus, and soil water content in four dune types with different population density (dune type I: 11.2 ± 1.7 no. m-2, type II: 24.2 ± 2.6 no. m-2, type III: 40.0 ± 4.0 no. m-2, and type IV: 53.5 ± 7.2 no. m-2) in Mu Us sandy land. Our results showed that (1) total bud density of population increased markedly with increasing population density, but it did not exhibit significant difference between dune types III and IV, where density was about 130budsm-2; and tiller bud density of population first increased, then decreased, and reached a maximum in dune type III. (2) Total bud density per individual in dune type III was significantly larger than that in other dune types (P < 0.05), whereas rhizome and tiller bud density per individual did not show significant differences in dune types II, III and IV (P > 0.05). (3) Buds tended to be concentrated at 10-30cm soil layer in all dune types, and be buried deeper in dune types III and IV thanthat in dune types I and II. (4) No pronounced relationship was shown between bud density and soil water content in 10-30cm soil layer with increasing population density. Our results suggest that moderate population density (40.0 ± 4.0no.m-2) significantly increase the bud bank density of L. secalinus population and individual. Soil water content was not the main factor responsible for the density of L. secalinus bud bank. These results can provide important information for implementation of effective sand fixation measures and species selection for desertification control in semiarid sandy land ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.