Abstract

The effect of the phase assemblage of the precursor powder on the properties of Ag/Bi-2223 tapes was investigated. The phase assemblage of the precursor powder was controlled by changing the calcination temperatures from 800 to or by adding 2223 seed particles to the precursor powder. The phase transformation kinetics, microstructure and transport properties of tapes were strongly dependent on the phase composition of precursor powder. The tapes fabricated from the powder calcined at lower temperatures (800 and ), which contained no 2223 phase and a relatively large amount of secondary phase, resulted in a microstructure with a larger grain size and a higher transport critical current. These tapes also appeared to have an appreciable incubation period in an isothermal annealing experiment with various soaking times. The phase transformation kinetics and microstructural development was pertinent to the nucleation and growth process for the mechanism of 2223 formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.