Abstract

The main purpose of this work was to prepare hafnium oxynitride (HfO x N y ) thin films. HfO x N y thin films were deposited by radio frequency reactive magnetron sputtering from a pure Hf target onto Quartz and ZnS substrates at room temperature. The depositions were carried out under an oxygen–nitrogen–argon atmosphere by varying the flow rate of the reactive gases (oxygen/nitrogen ratio). The variation of the flow rate of the reactive gases changed the structure and properties of the films. Glancing incidence X-ray diffraction (GIXRD) was used to study the structural changes of as-deposited films; a new crystalline hafnium oxynitride phase was formed in a region of oxygen/nitrogen ratio. Cross-section of the films observed by SEM revealed that the films grew with a columnar-type structure, and surface observation with AFM showed values of surface roughness changed with the flow rate of the reactive gases, higher oxygen fraction had lower surface roughness than lower oxygen fraction. Visible spectra, infrared spectra, refractive index, absorption coefficient also changed with the variation of the oxygen fraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.