Abstract
Many natural composite materials contain systems of partially oriented thin low-resistivity inclusions (for example, water-saturated microcracks in a double porosity sedimentary formation). We have calculated the components of the electrical conductivity tensor of such materials as a function of crack density. The results were obtained for thin ellipsoidal inclusions with conductivity (electrical or thermal) much larger than the matrix conductivity. To calculate the effective conductivity, we have used the effective field method (EFM). We have obtained the explicit expressions for the effective parameters of inhomogeneous materials. The application of the EFM allows one to describe the influence of the peculiarities in the spatial distribution of inclusions on the effective properties of the medium. General explicit expressions, obtained in this work, are illustrated by calculation examples for inclusions, homogeneously distributed in the sector [-Beta, Beta], where Beta is the disorientation angle, and some continuous angle distribution functions. The calculations have shown that the spatial distribution of the crack-like inclusions strongly affects the conductive properties of the effective medium and the symmetry of their tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.