Abstract

In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm.

Highlights

  • Nowadays, modern society needs specific materials for each application, so there is a need to develop new and advanced materials as technology evolves

  • Three thermoplastic polyurethane (TPU) polymers with variable hard segments (HS) content were used in this study (60%, 70%, and 80% of HS content)

  • Low-density nanocellular polymers based on PMMA/TPU blends have been produced by means of a gas dissolution foaming process

Read more

Summary

Introduction

Modern society needs specific materials for each application, so there is a need to develop new and advanced materials as technology evolves. In this framework, a new generation of cellular polymers with enhanced properties was developed during the last decade: the so-called nanocellular polymers [1]. Nanocellular polymers are porous materials characterized by cell sizes in the nanoscale. These materials have aroused great attention owing to their very interesting combination of properties. It is possible to produce semi-transparent nanocellular polymers [8,9], among other interesting properties [10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call